Preclinical ITP Characterization of Pirtobrutinib: A Non-Covalent, **Reversible**, **Bruton Tyrosine Kinase** Inhibitor

Tomás Jose Gonzalez Lopez¹, W. Ghanima², N. Brown³, J.R. Manro³, W. Blosser³, A. Capen³, J. Schroeder³, X. Gong³, P. McDonnell³, Y. Koh³, J. Schroeder³, J. Pauff³

¹Department of Hematology, Hospital Universitario de Burgos, Burgos, Spain^{; 2}Department of Research and Haemato-Oncology, Østfold Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; ³Eli Lilly and Company, Indianapolis, IN, USA;

Study was sponsored by Eli Lilly and Company

OBJECTIVES

C To provide a preclinical assessment of pirtobrutinib activity in ITP using both in vitro and in vivo methods

CONCLUSIONS

- Pirtobrutinib is a highly selective, non-covalent, reversible, BTK inhibitor showing efficacy and tolerability in B-cell malignancies, leading to approvals in CLL/SLL and MCL
 - Its optimized pharmacokinetic properties ensures high levels of sustained BTK inhibition over 24 hours with once-a-day dosing
- In vitro, pirtobrutinib reduced B-cell activation, antibody production, and $Fc\gamma R$ -mediated TNF α production in human monocytes
- In a mouse ITP model, pirtobrutinib concentrations increased with dose and positively correlated with platelet response. The high dose (30 mg/kg) had similar positive efficacy as control group, IVIG.
- To our knowledge, this is the first preclinical report of a noncovalent BTK inhibitor's effect on platelet response in ITP
- These data, combined with existing data demonstrating pirtobrutinib's selective and potent BTK inhibition, support further clinical investigation of pirtobrutinib for ITP treatment

European Research Consortium on ITP (ERCI) Meeting; Innovations in Immune Thrombocytopenia Venice, Italy ; November 18-19, 2024

- Binding of the platelet-bound antibodies to $Fc\gamma R$ on monocytes leads to their activation that potentiates the autoimmune response¹⁻³
- Pirtobrutinib previously demonstrated dose-dependent inhibition of B cell activation⁶ and could be studied for ITP therapy

Pirtobrutinib is a Non-covalent, Reversible, BTK Inhibitor with Unique PK Properties and Binding Mechanism

Plasma exposures throughout dosing interval⁵ Pirtobrutinib 19 Rilzabrutinib 3-4 Zanubrutinib 2-4 Acalabrutinib 16 Time (h) on Cycle 1 Day 8 Ibrutinib

- Pirtobrutinib, when dosed at 200 mg once daily, produces steady state plasma exposure corresponding to 96% BTK target inhibition⁴ and a half-life of 19 hours⁶
- Pirtobrutinib is approved for treating relapsed or refractory MCL in adults in the EU (EMA Conditional Approval, Oct 2023) after prior treatment with a BTK inhibitor,⁷ and in the USA (FDA Accelerated Approval, Jan 2023) after at least two lines of systemic therapy, including a BTK inhibitor, and for adult patients with CLL/SLL (FDA Accelerated Approval, Dec 2023) who have received at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor⁶

Pirtobrutinib Demonstrates High Selectivity for BTK

Pirtobrutinib was highly selective for BTK in >98% of the human kinome⁵

BTK STE	 IC₅₀ <10 nM 10 nM < IC₅₀ <50 nM 50 nM < IC₅₀ <100 nM 100 nM < IC₅₀ <200 nM 200 nM < IC₅₀ <500 nM 		% Enzyme Activity ⁴				Kinase Assay	
			Pirtobrutinib		Ibrutinib	Zanubrutinib	Pirtobrutinib	Rilzabrutinib ¹²
			1000 nM	100 nM	100 nM	100 nM	IC ₅₀ , nM	IC ₅₀ , nM
		ВТК	1.8	3	1.1	2.7	3.2	1.3
CMGC CK1		ІТК	103.4	106.1	2.3	85.2	>5000	440
The second second		RLK	19.6	68.4	-0.1	0.4	209	1.2
ATT A		TEC	64.6	97.2	3	8.9	1234	0.8
AGC		BMX	70.2	94.6	-0.1	2.5	1155	1.00
CAMK		BLK	72.8	81.7	0.6	-0.4	4100	6.3

- In follow-up cellular studies, pirtobrutinib retained >100-fold selectivity over other tested kinases, including selectivity for BTK over other TEC family member kinases (ITK, RLK, TEC, & BMX) where covalent BTKi have failed to maintain selectivity¹²
 - Pirtobrutinib only inhibits BTK (IC50) at single-digit nanomolar concentrations, whereas Rilzabrutinib inhibits 4/5 TEC family kinases at single-digit nanomolar concentrations
- Pirtobrutinib has shown favorable safety and tolerability in the oncology setting with low rates of discontinuation due to toxicity^{13,14}

Background

Pirtobrutinib may stabilize BTK in a closed inactive conformation⁴

Pirtobrutinib inhibits BTK activity by:

- Binding to BTK via an extensive water-mediated hydrogen bond network, unlike covalent BTKi that rely on Cys481 (shared by 9 other kinases)⁴
- Potentially stabilizing BTK in a closed, inactive conformation, blocking access to upstream kinases and phosphorylation of Y551, potentially inhibiting kinaseindependent BTK signaling⁴

Selectivity of BTK Inhibitors in **Biochemical Assays**

Methods Assessing Pirtobrutinib in ITP

Pirtobrutinib

FcyR

- Human B cells and monocytes were treated with pirtobrutinib or rilzabrutinib for one hour before stimulation to assess
- Antibody production
- TNF α release and gene expression

(In Vivo

Prior to antibody mediated platelet depletion BALB/c Mice (n=7-8/group) were treated with either[.]

- Pirtobrutinib (PO, 10 or 30 mg/kg)
- Vehicle (PO,
- 0.5%methycelluose/0.5%tween80/water)
- IVIG (IV, 1000mg/kg)

Pirtobrutinib Inhibits Key Mechanisms of ITP pathology: B cell antibody production

Human B cells from 5 donors were treated with pirtobrutinib or rilzabrutinib (1µM-0.05nM) for one hour before stimulation with cytidine-guanosine dinucleotides, LpS, or αCD40 and IL21 for 7 days

- Secretion of IgM and IgG were reduced with pirtobrutinib treatment
- Secretion of IgM was reduced with pirtobrutinib treatment independent of stimulation Antibody production was measured via ELISA

Pirtobrutinib Inhibits Key Mechanisms of ITP pathology: Antibody-dependent Monocyte Activation

Pirtobrutinib potently inhibited both TNF α release and gene expression from human monocytes stimulated with antibody immune complexes

FCγR signaling was activated on human monocytes through treatment with antibody immune complexes

Pirtobrutinib Increased Platelet Counts in a Mouse Model of ITP

Platelet Counts in Mouse Model of ITP Treated with Pirtobrutinib

* p < 0.05

** p< 0.0001

aRefers to the set of mice from the same cohort that did not have thrombocytopenia induced

Linear Regression of Pirtobrutinib Blood Concentrations and **Platelet Counts**

- Pirtobrutinib blood concentrations increased as dose increased and had a positive correlation with platelet response
- Pirtobrutinib significantly and dose-dependently increased platelet counts in mice relative to vehicle treated control mice
- Statistically, the high dose level (30 mg/kg) of pirtobrutinib was not significantly different from the positive efficacy control group, IVIG

Abbreviations

BTK, Bruton Tyrosine Kinase; CLL, chronic lymphocytic leukemia; FCγR, Fc gamma Receptor; IgG, immunoglobulin; IgM, immunoglobulin; ITP, Immune Thrombocytopenia; IVIG, Intravenous Immunoglobulin; IV, intravenous; MCL, mantle cell lymphoma; PO, by mouth; QD, once daily; SLL, small lymphocytic lymphoma; th/µL, thousands per microliter; TNF, tumor necrosis factor, th/µL.

References

- Cooper et al. NEJM 2019.
- Audia et al. J. Clin. Med. 2021.
- Cines et al. NEJM 2002. Gomez et al. Blood.2023.
- Mato et al, Lancet 2021
- 6. Jaypirca [Prescribing Information]. Indianapolis, IN: Eli
- Lilly and Company, 2023, 2024.
- Jaypirca EPAR (EMEA/H/C/005863), European Medicines 13. Coombs et al, JCO 2022. Agency, 2023.
- 8. Ucpinar et al. Clin Transl Sci. 2023.
- 9. Brukinsa [Prescribing Information]. San Mateo, CA: BeiGene, 2024. 10. Calquence [Prescribing Information]. Wilmington,
- DE: AstraZeneca, 2022. 11. Imbruvica [Prescribing Information]. South San
- Francisco, CA: Pharmacyclics LLC, 2024.
- 12. Langrish et al, J Immunol 2021.

14. Nirav et al, *JCO* 2023.

Acknowledgments

Medical writing support was provided by Abby Atwater, PharmD, RPh, and Alyson Essex, PhD, of Eli Lilly and Company